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The stressed state near cluster point z = 0 for microflaws (MiFs) in the form of cracks or thin linear sharply-angled inclusions 
in an elastic plane located along a line on one side or other of the cluster point and satisfy certain conditions is investigated. 
This is preceded by the analytic solution of the first and second fundamental problems of the theory of elasticity for a plane with 
an infinite set of eoUinear linear singularities elnstering at a finite point. Cases are considered in which the flaws are such that 
their images under the mapping ~ = 1/z are situated periodically along an entire line or only along a ray. Stability to fracture, 
both in the neighbourhood of an MiF cluster point and globally for an MiF system, are investigated using force and energy fracture 
criteria. Examples describing the fracture mechanism are given. An analytic solution of the problem of the interaction of a 
macroflaw (MaF) with an infinite series of MiFs collinear with it and clustering at the vertex of the MaF is obtained. The 
investigation is based on a conformal mapping and the results of [i--4], in which solutions are obtained in dosed form of the 
first and second fundamental problems of the theory of elasticity for a plane with a denumerable set of cuts with a cluster point 
at infinity. 

There have been previous investigations [5, 6] of the stressed state near a cluster point of microcracks 
arranged on a logarithmic scale along a ray, and asymptotic representations have been obtained for 
the stresses and stress intensity factors near the microcrack cluster point. The case considered in [5, 6] 
differs from the case considered here both in the method of investigation and in the way mechanical 
fracture is viewed. I 'he problem of the interaction of a macrocrack with an infinite set of mieroeracks 
arranged according to a certain law and clustering at infinity has been studied by various methods in 
[4, 7-9] and elsewhere. 

1. P R O B L E M S  OF T H E  T H E O R Y  OF E L A S T I C I T Y  F O R  A P L A N E  W I T H  
A D E N U M E R A B L E  SET OF L I N E A R  S I N G U L A R I T I E S  C L U S T E R I N G  

AT A F I N I T E  P O I N T  

Suppose that a homogeneous isotropic elastic plane with complex variable b = x 4- ~y is weakened 
by a denumerable set of microflaws (MiFs) in the form of cracks or thin rigid linear sharply-angled 
inclusions located along sections L,, = [an, bn], an ~ 0, bn ~ 0, n ~ I of the real axis, clustering at the 
point z = 0 and satisfying the conditions 

- '  (1.1) Ib,m-b~ tl>/ d>0,  a~'-b~' ~< 1 

when n is large. 
If the intervals cluster at the point z = 0 from both sides, then the set of indices I = {0; ___ 1; __.2;... }, 

where all the inte~zals with non-negative indices are situated to the right of the cluster point, and all 
the intervals with negative indices are situated to the left of this point (Fig. la). If, however, the intervals 
cluster only one side (say, the right), then I = {0; 1 ; . . . } ,  it being possible for a finite set of intervals 
to be situated to the left of the cluster point (Fig. lb). 

Conditions (1.1) are satisfied if, for example, all but a finite number of the intervals Ln are such that 
their images under the mapping ~ = 1/z form a periodic set along the entire real axis or semi-axis. We 
note that if the MiFs are located log-periodically, as in [6], then the second inequality in (1.1) is not 
satisfied. 

Suppose that on the sides L~ of the MiFs we have specified either the normal stress o~(t)  and the 
shear stress X~y(t) (,the first problem) or the partial derivatives (u', ~')+-(t) with respect to x of the 
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displacement components (the second problem), which are Hf lder  continuous in each interval and can 
grow no faster than M I t I -x°, 0 ~< ~ < 1 as t ~ 0, and that the stresses off', 6y**, x~ and rotation 
to ~ are specified at infinity. Furthermore, in the second problem we shall take as given the principal 
vectors Pn = Xn + iYn of the external loads acting on the micro-inclusions Ln, diminishing as n ~ 00 
no slower than M I an 12-x°. 

Problem. It is required to find the plain stress-strain state outside the flaws Ln, n ~ I characterized 
by finite elastic potential energy both in the neighbourhoods of the vertices of each flaw and in a 
neighbourhood of the duster  point z = 0 from which sufficiently small neighbourhoods of each interval 
Ln have been removed. 

We define neighbourhoods of the intervals L n as follows. Let L*  be the image of the interval L n under 
the mapping ~ = i/z, and let U*(L*) be its small e-neighbourhood, i.e. the set of points in the plane 
whose distance from L*  does not exceed e. The pre-image of the ne ighbourhood/~(L*)  under the 
inverse transformation z = 1/4 is denoted by U~(Ln) and will be called the 8-neighbourhood of the interval 
Ln; we will call the set of all these neighbourhoods U~(L) and will take it to be the e-neighbourhood of 
the "line" L which consists of all the intervals Ln, n ~ L 

In this case the stress-strain state of the plane with MiFs Ln, n ~ I possessing the properties described 
above is determined by the well-known Kolosov-Muskhelishvili formulae [10] in terms of complex 
potentials O(z), fl(z) which at the ends of the intervals Ln can become infinite with order less than one, 
while for small z, situated outside any fixed small neighbourhood Ue(L) of the line L understood as 
above, these potentials do not exceed M I z I -x in modulus for some Z, < 1. On the line L they satisfy 
the boundary conditions 

pO+(t) + f~-(t) =]'~(t), pO-(t) + ~+(t) =f-(t), t a L (1.2) 

• ÷ " m where in the case of the first problem p = 1, i f ( t )  = (6y - tX~y)- and m the case of the second proble 
p = -~: ; i f ( t )  = -2~t(u' + iv') ± r and ~t are the elasticity constants of the material. In a neighbourhood 
of infinity these functions have the form 

O ( z ) = F -  P 1 +O(z_2), f~(z)=F '~  ~:P 1 +O(z_2) (1.3) 
2x(~:+l) z 2x0¢+ 1) z 

F = 1 (ox + o~.. ) + i ~+12~t o~ ,  F" = o 7 - ix~. - F (1.4) 

where P is the principal vector of the external loads acting on all the flaws. 
Adding and subtracting conditions (1.2) from one another, we obtain the boundary conditions 

O~(t)+O~(t)=2p(t),  O~(t)-O~_(t)=2q(t), t ~ L  

2p(/) = f+(t)+ f -  (/), 2q(t) = f+(t) - y-( t)  (1.5) 

for finding the functions O1, 2(z) = pO(z) +__ fl(z), and the denumerable set of conditions 

( 0 [ ( 0  - p(t))dt = i(p - ~:) P,,, n ~ I (1.6) 
4, 2(~+ 1) 
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where P .  is the principal vector of external loads acting on the flaw L n. In the case of the first problem 
conditions (1.6) express the single-valuedness of the displacements after making a circuit around an 
MiE These functions have all the properties of the function O(z) at the ends of the intervals L .  and in 
a neighbourhood o:f the dus ter  point z = 0, while in a neighbourhood of  infinity they have the form 

(I)k(Z) = n k + C k  z - I  + O ( z - 2 ) ,  k : ! ,2  

B~ = (p - l )F+Oy  -ixT,., B 2 = ( p + l ) F - ~  7 +ix~., 

(~ - p ) P  (~: + p)P 
CI = 2x(r+l--------~' C2 = 2n(~:+l)  

In terms of the functions Oa, 2(z) the Kolosov-Muskhelishvili formulae can be written in the form 

(1.7) 

p(t~ x .4-~y) = 2 R e ( ~ l ( z ) +  O2(z)), 41.tpc0 = (~:+ I )hn(Ol (z )+O2(z) )  

2p(~:. - ix,:,. ) = • I (z) + • 2 (z) + pO l (~) - PO2 (z) + (z - ~)(O' I (z) + • 2 (z)) 

3 
41.tp ~ (u + ix)) = K~ I (z) + K:O 2 (z) - pOj (~) + pO 2 (~) - (z - ~)(O' I (z) + O2 (z)) 

where in the case of the first problem p = 1 and for the second p = -~:. 

( 1 . 8 )  

2. S O L U T I O N  OF T H E  P R O B L E M  

We apply the co~iformal mapping ~ = 1/z to the elastic domain. The line L then becomes the line 
L* consisting of intervals L* = { ~ ,  [3.}, t~ = I/b., fJ. = I/a., n e / w h i c h  cluster at infinity and according 
to (1.1) satisfy the conditions tZ.+l - tz. 1> d, I]. - t ~  ~< t for large n. Then the functions 

tl'Jl,2 (~)  ---- ~-201,2  ( [ ] 4)  9 ---- Z-OI .  2 (Z) (2.1) 

satisfy all the conditions of [1] together with the additional condition 

Wk(~) = Bk~ -2 + Ct~ -I + O(1), k = I, 2 

which should be satisfied in a neighbourhood of the point ~ = 0. Writing out the functions tI'a, 2(~) and 
changing back from ~ to z, we find that 

O l ( z )=  X(z) (R(z )+Q(z)+txBi ) ,  ct -I = lira X(z)= 1-1 ~ (2.2,) 
Z"~ ~ IIEI Cll 

X(z) I-I ~/a'b'' z - c , ,  2a,,b,, (2.3) 
,,el c,, ~/(Z - a,, )(Z - b,, ) a,, + b,, 

= ~, ! [ t - c , ,  p(t)dt 
R(z) ,,etni(z-c,,) ~,X+(t) t - -z  

(2.4) 

Q(z) = Y. A,, / (z - c n ) (2.5) 
nEI 

0 2 ( z ) : B 2 + l  ! q(t)dtt-z ' L =  UL",,~, (2.6) 

The infinite product (2.3) and series (2.4) converge absolutely and uniformly in any dosed  bounded 
domain which does not contain points of the line L. Each square root in the product (2.3) denotes that 
branch of  the multivalued function which is single-valued in the plane with the corresponding cut [ar~ 
bn] and which becomes equal to z as z ---> ~. The constants B1, 2 and functionsp(t), q(t) are found from 
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formulae (1.7), (1.4) and (1.5), respectively, while the constants An, n e I are found from the infinite 
series of linear algebraic equations 

Y.~, ,kAk = H,,, n ~ 1 (2 .7)  
k~l  

X +  
~,,k = ~ t (t) dt' H,, i (p- lQp,  _ ~(OtBl + R( t ) )X+( t )d  t 

t,, -c,, 2(~:+1) ' t,, 
(2.8) 

The solution of this system has to be found in the class of those complex sequences ak,  k ~ I such 
that in any closed bounded domain not containing the points c,, n ~ I the series (2.5) converges uniformly 
and such that for small z q~ UE(L) its sum Q(z)  does not exceed M I z I -x in modulus for some ~. < 1. 
System (2.7) is a consequence of conditions (1.6). If this system is solvable in the given class of sequences, 
its solution is unique and can be found by the reduction method or the method of successive approxi- 
mations. Our later arguments assume that system (2.7) is solvable. Some cases when this system is 
solvable will be considered in Sections 4 and 5. 

In particular, if the boundary conditions of the problem are zero, and if in the second problem the 
principal vectors P,, are also zero, then 

Oi (z )  = o tBiX(z) ( l  - )-'. A,, / (z  - c,,)), ( 1 ) 2 ( Z )  = B 2 (2 .9)  
he/ 

The constants An are found from system (2.7) where H,, = ~ X +(t)dt. 
z,, 

3. THE B E H A V I O U R  OF THE STRESSES  AND STRESS 
I N T E N S I T Y  FACTORS IN THE N E I G H B O U R H O O D  OF A 

M I C R O F L A W  C L U S T E R  P O I N T  

From the results of [1, 11] for the behaviour of the function W2(~) for large ~ and Eq. (2.1), it follows 
that for small z situated outside any fixed small e-neighbourhood U~(L) of the line L (as explained in 

k Section 1) the function ~2(z) does not exceed M lz I- in modulus for any ~. e (k0, 1), where 7% describes 
the rate of growth of the original data of the problem near the MiF cluster point. The function R(z)  
does not exceed M I z I -x in modulus. Because the function X(z) is bounded outside the neighbourhood 
U~(L), the behaviour of the function ~l(z) for small z q~ U~(L) also depends on the nature of the function 

z which does not exceedM z "am modulus where ~. 1 Q ( ) ,  " I I- " , 1 "s some non-negative number less than unity. 
Consequently, if ~.1 > ~0, then for smallz ~ U~(L) the function ~l(z) does not exceed M I z I- in modulus, 
and according to (1.8) the stresses, rotation and derivatives of the displacement components for small 
z q~ Ue(L) also do not exceed M I z [ -  in modulus. If ~'1 "~ ~0, they do not exceed M I z l- in modulus 
for any ~,e (~ ,  1). 

When z --~ 0 along any fixed ray in the upper or lower haft-plane, the functions X(z) and R(z) in formula 
), 

(2.2) tend to the limits i and 0, respectively, while the function ~2(z) does not exceed M [ z l- in modulus 
when 0 < ~0 < i and M in I z I -a when ~0 = 0. The behaviour of the stresses along these rays is therefore 
governed by the behaviour of the function Q(z)  as z -~ 0 along these rays, which in turn depends on 
the behaviour of the solution of system (2.7) when n -~ ~. 

We will find the stress intensity factors near the vertexg n = a n o r g  n = b n of the flaw Ln [12, 13] 

K t ( g " ) - i K 2 ( g " ) =  x-..-~g,,.x~Llim p2+ 9 1 ~[2~ lx -g , ,  I(O,.(x +iO)-i'Cx,.(x ,' 

where in the case of the first problem p = 1 and in the second p = -K. From formulae (1.8), (2.2)-(2.6) 
we find that 

Kl(g, , ) - iK2(g, , )= lim a/2rclx-g, ,  I~j(x+iO)=rl(g, ,)[R(g,)+Q(g,,)+o~B 1] (3 .1)  
x-...~gn,x~L 

rl(g,,)=g,,(a,, +b,,)-Ict-ia/2rc(b,,-a,,) l'I ( g , - c k ) /  ~(g , , -ak)(g , , -b~)  (3 .2)  
kel ,k~n 

According to (1.1) the inequalities 
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b,, - a,, ~ la,,b,, ~ Mg ,], I g,, I <~ MI n I -t 

are satisfied for large n, while the functions R(gn), Q(gn) can increase no faster than n ~ ** as M I z I -x, 
and so the stress intensity factors satisfy the inequality 

I Kl.2(g,,)l <~Mlg. I  I-~'<~Mlnl ~-t, 0~< ~.< 1 

for large n, i.e. they become as small as desired for flaw vertices situated sufficiently close to the cluster 
point. Hence, in terms of the force fracture criteria [14] the system of MiFs Ln, n ~ / w e  are considering 
is always stable with respect to fracture in some neighbourhood of the MiF cluster point. In the case 
of global instability with respect to fracture, the fracture begins at the vertices of some finite set of flaws 
that are "far" from the cluster point and depend on the external loads and distribution of the MiFs. In 
this way the force criterion mechanism of the fracture of the MiF system under consideration differs 
from the mechanism of the fracture of the system of microcracks that has been previously considered 
[6]. The latter is uustable to fracture for arbitrarily small external loads, and its fracture occurs in a 
neighbourhood of the MiF duster point through the merging of all but a finite number of cracks. Specific 
examples of fractures that occur through the mechanism we described above will be given in the following 
section. 

We also consider the stability of the MiF duster  point z = 0 to fracture using the energy criterion, 
and to this end we study the invariant complex F-integral of Rice-Cherepanov [15] along a circle of 
small radius r centred at the point z = 0. If this circle intersects a sufficiently small neighbourhood of 
some flaw Ln in the sense of Section 1, then the part of the circle which lies within this neighbourhood 
is replaced by the smaller part of the boundary of the neighbourhood. 

Suppose that system (2.7) is solvable and that for large n its solution satisfies the inequality I An I ~< 
M11 an 12- Xa, 0 ~< ~'X < 1. Then Q(z) does not exceed z ~ 0 in modulus when 0 < ~1 < 1 and M2 In I z 1-1 
when kl = 0 as M I z I -t along any fixed ray in the upper or lower half-plane, but for small z ~ U~(L) 
one can only assert that I Q(z) I ~< M3 Iz I-X for any ~, e (~.1,1). The function ~2(z) has the same properties 
as z ~ 0 along the given rays, except that one must now, use ~ instead of ~,1. 

We put ~. = max {ko; ~.1}. Then according to (1.8) the F-integral under consideration has the estimate 
I F I ~< Mrl-2X, from which it is clear that in the case ~. < 1/2 this integral decreases without limit as r ~ 0. 
Hence, in this case, in the energy criterion approach, the fracture of some small neighbourhood of the 
MiF cluster point is again stable to fracture and the global fracture of the MiF system will again proceed 
according to the mechanism described above. Examples where this situation occurs will be given in 
Section 4. 

If ~. t> 1/2, the stability of a neighbourhood of the MiF cluster point to fracture in the energy 
criterion approach depends on the value of the integral F, which as r ~ 0 can have a definite finite 
limit or can increase without limit. In each such specific case it is necessary to carry out an additional 
investigation. 

Remark. Using a conformal mapping and the results of [16], one can similarly investigate the stressed state near 
the finite duster point of an infinite set of closed microcracks in a piecewise-homogeneous elastic plane which is 
situated along the contact line of the media. A case was considered in [16] in which the cracks were clustered at 
infinity. 

4. A T W O - S I D E D  P E R I O D I C  D I S T R I B U T I O N  OF M I C R O F L A W S  
S E A L E D  A C C O R D I N G  TO T H E  M A P P I N G  ~ = 1/z 

Suppose that the flaws are situated in the intervals Ln = {an, bn} where an 1 = (n + 1/2)T + a, b~ 1 = 
(n + 1/2)T - a, a < T/2, n = 0, _+1 , . . . ,  i.e. they cluster at the point z = 0 from both sides (Fig. la), 
and that their images Ln = [(n + 1/2)T- a, (n + 1/2)T + a] under the mapping ~ = 1/z form a periodic 
set with period T lying along the entire real axis. 

In this case, according to the results of [2] the function 

cosrl • r~a (4.1) 
X(z) = @os(n  + 'b)cos(n-  b) '  "q = ~ '  b = T 

while system (2.7) has the form 
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Ct.-kAk-tx,l+Y22k=~_ Ak =iH,,, n = 0 ,  + i  . . . .  

t, 2x sin xdx 
= ~ X 2 . I 0 --112X2 ( s in  2 b - s I n  2 x )  y2 

From this, adding all the equations, and summing the resulting series and computing the integrals, 
we find the sum YA k = C1 cos b where C1 is found from formula (1.7). Hence system (2.7) has the form 

~ O t , _ k A  k = G . ,  n = 0 , + l  . . . .  

(4.2) K - p  
G, = 2~-(~-+ I) (riP,, + ct,,+~ Pcos b) - i ~ (R( t )  + B I cos b)X + ( t )dt  

t,, 

For large n the numbers G,  satisfy the inequalities 

IG, I ~ M01nl x°-2 , ~'0 < 1 

and so [17, 18] system (4.2) is solvable in the class of sequences described in Section 2 and has the unique 
solution 

G(t) dt ~', ~,,_kGk, G(t)= ~ G,,t n, offt)= Y,o~,,t" A,, = - L  I = 
2 g i  Itl=l ~ ( t )  k = - ~  , = - ~  n = - ~  

(4.3) 

where ~ are coefficients of the complex Fourier series of the function 1/a(t )  in the interval [0, 2g]. For 
large n the numbers A ,  satisfy the inequality I A ,  I ~< M11 n I x-2 for any ~, e (~ ,  1). The solution of 
system (4.2) can also be found by the reduction method. 

According to (3.1), (2.2) and (4.1) the stress intensity factors near the vertexg. = a ,  o rg ,  = b, obey 
the formula 

Ki (g,,) - iK2 (g,,) = Ig,, I ~-T tg b [ R(g,, ) + Q(g,, ) + B I cos b], b = rra / T 

The functions R, Q and the constant B 1 are found from formulae (2.4), (2.5) and (1.7), (1.4), 
respectively. 

In this case the functions R(z ) ,  Q(z) ,  which also means the functions ~l(Z), together with the function 
• 2(z) as z ~ 0 outside any fixed small neighbourhood Uc(L)  can increase no faster than M I z I -~" for 
any ~, e (L0, 1), where k0 describes the rate of growth of the original data of the problem in the 
neighbourhood of the point z = 0. This follows from the results of [2, 11] and the property of A ,  given 
above. Consequently, the stresses, rotation and the derivatives of the displacement components can 
increase without limit as z ~ 0 outside U~(L), but no faster than M I z I -x for any ~, e (~ ,  1), while the 
stress intensity factors K1,2(g,) decrease no slower than M I z I- outside n ~ oo. In the case ~ < 1/2 the 
invariant F-integral along a circle of radius r with centre at z = 0 always tends to zero as r ~ 0, while 
in the ~ / >  1/2 case it can have a finite or infinite limit. In particular, if all the initial data of the problem, 
apart from the loads at infinity, are zero, the solution of the problem is given by functions (2.9), and ~. 
can be taken to be as small as desired. 

Example 1. Suppose that the plane is weakened by cracks L,, n = 0, _+ 1, . . . ,  acted upon at their edges by constant 
stresses o~ = --6~ = on, x~y = xn, while a specified stress and rotation act at infinity. Then the function R(z) =- O, 
while the principal vector of the external forces applied to the edges of the crack L n is equal to 1), = 2i(on - ixn)(an 
- b,). We take stresses o,, % such that 

K-p p,, =iBt cosb SX+(t)dt (4.4) 
2(1~+1) t,, 

i.e. 

o ,  - ix , ,  = ia  -]  (~: - 1 )-I ( (2n  + 1) 2 T 2 - 442  )BI.I~,,, B I = d y  - ix~v (4.5) 
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i, sin x dx i~,, = 4(2n + i)(IC + l)/tET_l cosbj , x 
o (4x" - (2n + 1) E g2 )2 (sin E b - sin E x) ~ 

Hence, in particular, it is clear that for large n the stresses t~, x, decrease as 1/n, while the numbers P~ decrease 
as 1/n 3. Then the principal vector P = Y, Pn = 0 and in system (4.2) all the Gn = 0. Hence the solution of the system 
is trivial and Q(z) =-- O. The solution of the elasticity theory problem is therefore given by the functions 

On ixs, b,t Z 
~1 (z) = B I (cosb)X(z), ~2 (z) = B 2 + ).~ In 

n=-~ ~i a n - z 

and the stress intensity factors are found from the equation 

KI (gn) - iK2 (gn) = Ign I~/~ Tsin 2b B I (4.6) 

where gn = an or gn -'= bn. From this it is clear that the largest value of I K1 -//(21 is reached when gn = a-1 and gn 
= b0, while when n --~ ** the stress intensity factors decrease as 1/n. 

Consequently, in the force criterion approach to fracture, when I/(1 -/K21 reaches a critical value, the fracture 
of  the crack system starts at the left tip a-1 of crack L-1 and the right tip b0 of crack L0, simultaneously and to the 
same degree. Because the functions ~1, 2(z) are bounded outside any field small neighbourhood of the line L, the 
same situation applies in the energy approach to fracture. 

Example 2. Suppose that the plane is weakened by thin rigid, rectilinear sharply-angled inclusions Ln, n = O, 
-_. 1 . . . . .  and that sp~cified stresses and rotation are applied at infinity. We apply loads to the inclusions Ln so that 
Eqs (4.4) are satisfied, i.e. Pn = 8K-IBII]n where B1 and ~ are found from formulae (1.7), (1.4) and (4.5), respectively. 
Then the stress intensity factors again satisfy Eq. (4.6) and the situation described in Example 1 applies to the 
stability of this system to fracture. 

5. A O N E - S I D E D  P E R I O D I C  D I S T R I B U T I O N  O F  M I C R O F L A W S  
S C A L E D  A C C O R D I N G  T O  T H E  M A P P I N G  ~ = l l z  

Suppose  tha t  the flaws are  dis tr ibuted a long the  sections L n = [an, bn] where  an -1 = (n + 1/2)T + a, 
b~  1 = (n  + 1/2)T- a,  a < T/2, n = 0, 1 , . . . ,  i.e. they  are always to the right o f  the  d u s t e r  poin t  z = 0 
(Fig. l b )  and  their  images  unde r  the  mapp ing  ~ = 1/z fo rm a per iodic  set  with per iod  T located  only 
on  the  posit ive real  semi-axis. 

In  this case we have [3] 

X(z)  = ~ / r ( n  + b ) r ( r l -  b) / r ( n ) ,  rl = ~ -  1 / (Tz), b = a / T 

where  F(z) is the  Eu le r  gamma-funct ion ,  and system (2.7), af ter  t ransformat ions  similar to those appl ied 
to  this sys tem in Sect ion 5, takes  the fo rm 

~y,,kAk = iH,~ +tx(C I +~Bl)y ,  ' _~,  n = 0,1 .... 
k=0 

I, IF(x - n + b )F(x  - n - b) I ~ dx , b = a 
T,,k= 5 F ( x - n )  n - k  x T --b 

~ 8a 2 = _~T [ W ( 1  + b )  + ~(21__ b ) _  2 ~ ( 1 ) 1  
= ,!'o T (2n+l ) (4a  2 - ( 2 n +  l )2T 2 ) 

W(z) = ( I n r ( z ) ) ' ,  tx = 

(5.1) 

The  constants  C1, B1, Hn are found f rom formulae  (1.7), (1.4) and (2.8), and the stress intensity factors 
obey  the  fo rmula  

b~( Ttgrtb "~  
K l ( g , , ) - i K E ( g , . ) = l g , , I r ( n . l +  )~n !F(~¥ i~_Eb) )  (R(gn)+Q(g, , )+ B l ~ )  
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where the upper plus sign refers to the vertex gn = an and the lower minus sign to gn = bn. The unique 
solvability of system (5.1) was proved in [3], but the solution was not found in explicit form. The solution 
can be obtained by the reduction method. 

All the results and derivations of Section 4 apply to the behaviour of the stresses and stress intensity 
factors in the neighbourhood of this MiF cluster point. 

6. THE I N T E R A C T I O N  OF A M A C R O F L A W  W I T H  AN I N F I N I T E  
SERIES  OF M I C R O F L A W S  

Suppose that the plane is weakened by a macroflaw (MaF) L0 = [-2/, 0], l > 0 and MiFs Ln -- Jan, 
bn], an > O, bn > 0, n = 1, 2 , . . .  which cluster at the tip z = 0 of the MaF (Fig. 2a). 

In this case all the results of Section 2 remain true if one puts I = {0; 1 ; . . .  }, a0 = -2/, Co = -1 
in all the formulae, and also puts ~l(aobo)/C o = 1 in formulae (2.2) and (2.3). Here the solution of 
system (2.7) has to be found in the class of sequences Ak,  k, ~ I such that the sum Q(z)  of series 
(2.5) for small z q~ U~(L) does not exceed in modulus the expression M I z I -;~ for some ~, < 1/2. For 
the stress intensity factors at the tips of the MiFs Ln, n = 1, 2 , . . . ,  formulae (3.1) and (3.2) hold with 
the above stipulations, and the stress intensity factors at the left tip a0 = - 2 / o f  the MaF are found from 
formula (3.1) where 

Tl(a 0 ) = {x -I a / ~  f i  ( a  0 - c,, ) / ~ / ( a  0 - a,, ) ( a  0 - b n ) 

For the right tip z = 0 of the MaF, the neighbourhood of which contains an infinite set of MiFs, it is 
in general impossible to define a stress intensity factor, because in the general case for small z q~ U~(L) 
only an upper estimate is known for the functions tbl, 2(z), and the precise asymptotic forms are unknown. 
Nevertheless, there are cases when these functions have definite asymptotic forms as z ---> 0 along certain 
rays. Then according to (1.8), (2.2)--(2.6), asz ---> 0 the stresses will also have a definite asymptotic form 
containing parameters which can be taken to be the stress intensity factors. 

For example, suppose that when z ---> 0 along the imaginary axis the function Q(z)  - A(2~)  -x, 0 ~< 
~. < 1/2. Then the same asymptotic form occurs z ---> 0 along any fixed ray lying in the upper or lower 
half-plane. Here the function z--> 0 defined by formula (2.4) has the limit B = R(0) and 

@1 (z) - (K  I - iK 2)(2r~z) -x-~,  K I - iK 2 = A~r-~, 0 < ~. < (6.1) 

_1 
d p l ( z ) - ( K  I - i K 2 ) ( 2 n z  ) ~ ,  K I - i K  2 = ( A +  B + t x B , ) - ~ ,  ~.=0 (6.2) 

Branches of multivalued functions in the plane with a cut along the negative real semi-axis are taken 
so that on the positive real semi-axis they take real positive values For the function @2(z) given by formula 
(2.6), when z ---> 0 along a given ray we have the estimate I @2(z) I ~< M I z I-" when 0 < 2t < 1 and I tI~2(z) [ 
~< M In I z 1-1 when ~0 = 0, where k0 describes the growth rate of the original data of the problem near 
the point z = 0. 

Suppose ~0 < ~. + 1/2. Then according to (1.8) the asymptotic form of the stresses asz ---> 0 is completely 
determined by the representations (6.1) and (6.2), and the constants K1 and K2 in these 
representations are naturally taken to be the stress intensity factors at the tip z = 0 of the MaE When 
~. = 0 the stress intensity factor in this sense and the stress intensity factor in the classical sense [12, 
13] are identical. In the case ~ I> h + 1/2 the asymptotic form of the stresses as z ---> 0 also depends on 
the behaviour of the function O2(z) asz ---> 0. In each case one has to perform additional investigations, 
which we shall not dwell on. 

If the MaF has the asymptotic form (6.1) near to the tip z = 0, the invariant Rice-Cherepanov F- 
integral computed along a circle of small radius r and centre at z = 0 increases as r ---> 0 as r -2x. This 
indicates the instability of the MaF to fracture in terms of the energy criterion. 

If the MaF has the asymptotic form (6.2) near to z = 0, then in the case when ~0 ~< 1/2 the given F- 
integral will have a finite limit as L0 = (--~, 0] whose value determines the stability of the tip of the 
MaF to fracture. In the case when k0 > 1/2 the F-integral as r ---> 0 can have both finite and infinite limits. 
In each such case an additional investigation is required. 

Suppose that the MaF lies along the ray L0 = (--T'., 0] (Fig. 2b) and the boundary conditions 
specified along its sides decrease no slower than M I t I -%, ~0 > 1/2 as t ---> ~. In this case all the results 
of Section 2 still remain true if the functions X(z) and R(z)  are replaced by the functions 
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a )  ~ " " * ' ~  • 

Lo z=O L3 L2 LI 

(b) ""  , • ..4~a~--~-~---~.-- • 

-,,= Lo z=O L3 L2 
Fig. 2. 

Rt(z )= R ( z ) + l  °f. p(t)  dt X I ( z ) =  X ( z ) I  ~ z ,  
ni _~ X~-(t) t -  z 

and I = {1; 2 ; . . . } ,  L = L0 U L1 O . . .  are  t aken  in all formulae ,  while the solution of  system (2.7) is 
sought  in the  class o f  sefluences Ak, k ~ I such tha t  the sum Q(z) of  series (2.5) for  small  z ~ U~(L) 
does  not  exceed M I z I -x in modu lus  for  s o m e  k < 1/2. He re ,  according to (1.8), in o rde r  to find the 
cons tan t  B2 in fo rmu lae  (2.6) in the case of  the first p r o b l e m  (i.e. when  p = 1) it is necessary  to specify 
the  va lue  of  the  hydrosta t ic  stress (t~*~ + 6~)/2 at infinity and the ro ta t ion  co', while in the case of  the 
second p r o b l e m  p -'= - K  we need  the value (o*~ + a~)/2 or  only Oy and (o ~ or  x~y. Because  the funct ion 
dpl(Z ) ~ B1 z-1/2 for  large z outs ide  some  fixed ne ighbourhood  of  the ray L0, in o rde r  to find the constant  
B1 in fo rmula  (2.2) it is necessary to specifYlnOt just  the values  of  these p a r a m e t e r s  as z ---> 0-, but  also 
their  asympto t ic  f o r m  with accuracy to I z I- '~ inclusive. 

In  this case fo rmu lae  (3.1) and (3.2) also hold  for  the stress intensity factors  at the tips of  the  MiFs 
if one  takes  I = {1; 2 ; . . . }  and  the n u m b e r  rl(gn) is divided by ~/(gn), while the  s i tuat ion previously 
descr ibed again appl ies  to the  p r o b l e m  of  the  stress intensity factor  at the tip z = 0 of  the  M a E  

T h e  m o d e l  cons idered  above of  an elastic p lane  with an infinite set  o f  MiFs in the fo rm of  cracks or  
thin rigid l inear  inclusions which d u s t e r  at  a finite point  can be used to s tudy the s tressed state nea r  a 
po in t  with a small  ne ighbourhood  containing a large n u m b e r  of  MiFs of  the given type, s i tuated in a 
given way and strongly concen t ra ted  nea r  tha t  point .  In this case a set o f  MiFs,  which mus t  in reality 
be  finite, can be  rep laced  by an infinite set o f  MiFs containing new flaws such tha t  to a given accuracy 
they reflect  the  o rde r  and na ture  of  the posi t ioning of  the  original flaws. O n e  can also use o the r  models  
to  descr ibe  the  actual  object.  For  example ,  the  ne ighbourhood  with flaws can be  rep laced  by a mater ia l  
without  flaws and described by different elasticity constants. To determine the effective elasticity constants 
o f  the  new mate r ia l  one  can  use the mode l  descr ibed  above.  

This  research  was p e r f o r m e d  with financial suppor t  f rom the Russian Founda t ion  for  Basic Research  
(94-01-00207). 
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